Эквипотенциальные поверхности. Эквипотенциальные линии их свойства

Эквипотенциальные поверхности. Эквипотенциальные линии их свойства

Эквипотенциальные поверхности это такие поверхности каждая из точек, которых обладают одинаковым потенциалом. То есть на эквипотенциальной поверхности электрический потенциал имеет неизменное значение. Такой поверхностью является поверхности проводников, так как их потенциал одинаков.

Представим себе такую поверхность, для двух точек которой разность потенциалов будет равна нулю. Это и будет эквипотенциальная поверхность. Поскольку потенциал на ней одинаков. Если рассматривать эквипотенциальную поверхность в двухмерном пространстве, допустим на чертеже, то она будет иметь форму лини. Работа сил электрического поля по перемещению электрического заряда вдоль этой лини будет равна нулю.

Одним из свойств эквипотенциальных поверхностей является то, что они всегда перпендикулярны силовым линиям поля. Это свойство можно сформулировать и наоборот. Любая поверхность, которая перпендикулярна во всех точках к линиям электрического поля и называется эквипотенциальной.

Также такие поверхности никогда не пересекаются между собой. Так как это означало бы различие потенциала в пределах одной поверхности, что противоречит определению. Еще они всегда замкнуты. Поверхности равного потенциала не могут начаться и уйти в бесконечность, не имея при этом четких границ.

Как правило, на чертежах нет необходимости изображать поверхности целиком. Чаще изображают перпендикулярное сечение к эквипотенциальным поверхностям. Таким образом, они вырождаются в линии. Этого оказывается вполне достаточно для оценки распределения данного поля. При изображении графически поверхности располагают с одинаковым интервалом. То есть между двумя соседними поверхностям соблюдается одинаковый, шаг скажем в один вольт. Тогда по густоте линий образованных сечением эквипотенциальных поверхностей можно судить о напряжённости электрического поля.

Для примера рассмотрим поле, создаваемое точечным электрическим зарядом. Силовые линии такого поля радиальные. То есть они начинаются в центре заряда и направлены на бесконечность, если заряд положительный. Или направлены к заряду, если он отрицательный. Эквипотенциальные поверхности такого поля будут иметь форму сфер с центром в заряде и расходящихся от него. Если же изобразить двухмерное сечение, то тогда эквипотенциальные лини будут в виде концентрических окружностей, центр которых также расположен в заряде.

Эквипотенциальные поверхности
Рисунок 1 — эквипотенциальные лини точечного заряда

Для однородного поля такого как, например поле между обкладками электрического конденсатора поверхности равного потенциала будут иметь форму плоскостей. Эти плоскости расположены параллельно друг другу на одинаковом расстоянии. Правда на краях обкладок картина поля исказится вследствие краевого эффекта. Но мы представим себе, что обкладки бесконечно длинные.

Эквипотенциальные поверхности
Рисунок 2 — эквипотенциальные линии однородного поля

Чтобы изобразить эквипотенциальные лини для поля, создаваемого двумя равными по величине и противоположными по знаку зарядами не достаточно применить принцип суперпозиции. Так как в этом случае при наложении двух изображений точечных зарядов будут точки пересечения линий поля. А этого быть не может, так как поле не может быть направлено сразу в две разные стороны. В этом случае задачу необходимо решить аналитически.

Эквипотенциальные поверхности
Рисунок 3 — Картина поля двух электрических зарядов